(5分)已知正四棱锥的侧棱长为$l$,其各顶点都在同一球面上.若该球的体积为$36\pi$,且$3\leqslant l\leqslant 3\sqrt{3}$,则该正四棱锥体积的取值范围是( ) A.$[18$,$\dfrac{81}{4}]$ B.$[\dfrac{27}{4}$,$\dfrac{81}{4}]$ C.$[\dfrac{27}{4}$,$\dfrac{64}{3}]$ D.$[18$,$27]$ 分析:画出图形,由题意可知求出球的半径$R=3$,设正四棱锥的底面边长为$a$,高为$h$,由勾股定理可得${l}^{2}=\dfrac{1}{2}{a}^{2}+{h}^{2}$,又${R}^{2}=(h-3)^{2}+(\dfrac{\sqrt{2}a}{2})^{2}$,所以$l^{2}=6h$,由$l$的取值范围求出$h$的取值范围,又因为$a^{2}=12h-2h^{2}$,所以该正四棱锥体积$V(h)=-\dfrac{2}{3}{h}^{3}+4{h}^{2}$,利用导数即可求出$V(h)$的取值范围. 解:
如图所示,正四棱锥$P-ABCD$各顶点都在同一球面上,连接$AC$与$BD$交于点$E$,连接$PE$,则球心$O$在直线$PE$上,连接$OA$, 设正四棱锥的底面边长为$a$,高为$h$, 在$\rm{Rt}\Delta PAE$中,$PA^{2}=AE^{2}+PE^{2}$,即${l}^{2}=(\dfrac{\sqrt{2}a}{2})^{2}+{h}^{2}=\dfrac{1}{2}{a}^{2}+{h}^{2}$, $\because$球$O$的体积为$36\pi$,$\therefore$球$O$的半径$R=3$, 在$\rm{Rt}\Delta OAE$中,$OA^{2}=OE^{2}+AE^{2}$,即${R}^{2}=(h-3)^{2}+(\dfrac{\sqrt{2}a}{2})^{2}$, $\therefore$$\dfrac{1}{2}{a}^{2}+{h}^{2}-6h=0$,$\therefore$$\dfrac{1}{2}{a}^{2}+{h}^{2}=6h$, $\therefore l^{2}=6h$,又$\because 3\leqslant l\leqslant 3\sqrt{3}$,$\therefore$$\dfrac{3}{2}\leqslant h\leqslant \dfrac{9}{2}$, $\therefore$该正四棱锥体积$V(h)=\dfrac{1}{3}{a}^{2}h=\dfrac{1}{3}(12h-2{h}^{2})h=-\dfrac{2}{3}{h}^{3}+4{h}^{2}$, $\because V'(h)=-2h^{2}+8h=2h(4-h)$, $\therefore$当$\dfrac{3}{2}\leqslant h < 4$时,$V'(h) > 0$,$V(h)$单调递增;当$4 < h\leqslant \dfrac{9}{2}$时,$V'(h) < 0$,$V(h)$单调递减, $\therefore V(h)_{max}=V$(4)$=\dfrac{64}{3}$, 又$\because V(\dfrac{3}{2})=\dfrac{27}{4}$,$V(\dfrac{9}{2})=\dfrac{81}{4}$,且$\dfrac{27}{4} < \dfrac{81}{4}$, $\therefore$$\dfrac{27}{4}\leqslant V(h)\leqslant \dfrac{64}{3}$, 即该正四棱锥体积的取值范围是$[\dfrac{27}{4}$,$\dfrac{64}{3}]$, 故选:$C$.
点评:本题主要考查了正四棱锥的外接球问题,考查了利用导数研究函数的最值,属于中档题.
|