(5分)设$a=0.1e^{0.1}$,$b=\dfrac{1}{9}$,$c=-\ln 0.9$,则( ) A.$a < b < c$ B.$c < b < a$ C.$c < a < b$ D.$a < c < b$ 分析:构造函数$f(x)=\ln x+\dfrac{1}{x}$,$x > 0$, 设$g(x)=xe^{x}+\ln (1-x)(0 < x < 1)$, 则${g}'(x)=(x+1){e}^{x}+\dfrac{1}{x-1}=\dfrac{({x}^{2}-1){e}^{x}+1}{x-1}$, 令$h(x)=e^{x}(x^{2}-1)+1$,$h\prime (x)=e^{x}(x^{2}+2x-1)$,利用导数性质由此能求出结果. 解:构造函数$f(x)=\ln x+\dfrac{1}{x}$,$x > 0$, 则$f'(x)=\dfrac{1}{x}-\dfrac{1}{{x}^{2}}$,$x > 0$, 当$f'(x)=0$时,$x=1$, $0 < x < 1$时,$f\prime (x) < 0$,$f(x)$单调递减; $x > 1$时,$f\prime (x) > 0$,$f(x)$单调递增, $\therefore f(x)$在$x=1$处取最小值$f$(1)$=1$, $\therefore$$\ln x > 1-\dfrac{1}{x}$, $\therefore \ln 0.9 > 1-\dfrac{1}{0.9}=-\dfrac{1}{9}$,$\therefore -\ln 0.9 < \dfrac{1}{9}$,$\therefore c < b$; $\because -\ln 0.9=\ln \dfrac{10}{9} > 1-\dfrac{9}{10}=\dfrac{1}{10}$,$\therefore$$\dfrac{10}{9} > {e}^{0.1}$, $\therefore 0.1e^{0.1} < \dfrac{1}{9}$,$\therefore a < b$; 设$g(x)=xe^{x}+\ln (1-x)(0 < x < 1)$, 则${g}'(x)=(x+1){e}^{x}+\dfrac{1}{x-1}=\dfrac{({x}^{2}-1){e}^{x}+1}{x-1}$, 令$h(x)=e^{x}(x^{2}-1)+1$,$h\prime (x)=e^{x}(x^{2}+2x-1)$, 当$0 < x < \sqrt{2}-1$时,$h\prime (x) < 0$,函数$h(x)$单调递减, 当$\sqrt{2}-1 < x < 1$时,$h\prime (x) > 0$,函数$h(x)$单调递增, $\because h(0)=0$,$\therefore$当$0 < x < \sqrt{2}-1$时,$h(x) < 0$, 当$0 < x < \sqrt{2}-1$时,$g\prime (x) > 0$,$g(x)=xe^{x}+\ln (1-x)$单调递增, $\therefore g(0.1) > g(0)=0$,$\therefore 0.1e^{0.1} > -\ln 0.9$,$\therefore a > c$, $\therefore c < a < b$. 故选:$C$. 点评:本题考查三个数的大小的判断,考查构造法、导数性质等基础知识,考查运算求解能力,是难题.
|