(5分)记函数$f(x)=\sin (\omega x+\dfrac{\pi }{4})+b(\omega > 0)$的最小正周期为$T$.若$\dfrac{2\pi }{3} < T < \pi$,且$y=f(x)$的图像关于点$(\dfrac{3\pi }{2}$,$2)$中心对称,则$f(\dfrac{\pi }{2})=($ ) A.1 B.$\dfrac{3}{2}$ C.$\dfrac{5}{2}$ D.3 分析:由周期范围求得$\omega$的范围,由对称中心求解$\omega$与$b$值,可得函数解析式,则$f(\dfrac{\pi }{2})$可求. 解:函数$f(x)=\sin (\omega x+\dfrac{\pi }{4})+b(\omega > 0)$的最小正周期为$T$, 则$T=\dfrac{2\pi }{\omega }$,由$\dfrac{2\pi }{3} < T < \pi$,得$\dfrac{2\pi }{3} < \dfrac{2\pi }{\omega } < \pi$,$\therefore 2 < \omega < 3$, $\because y=f(x)$的图像关于点$(\dfrac{3\pi }{2}$,$2)$中心对称,$\therefore b=2$, 且$\sin (\dfrac{3\pi }{2}\omega +\dfrac{\pi }{4})=0$,则$\dfrac{3\pi }{2}\omega +\dfrac{\pi }{4}=k\pi$,$k\in Z$. $\therefore$$\omega =\dfrac{2}{3}(k-\dfrac{1}{4})$,$k\in Z$,取$k=4$,可得$\omega =\dfrac{5}{2}$. $\therefore f(x)=\sin (\dfrac{5}{2}x+\dfrac{\pi }{4})+2$,则$f(\dfrac{\pi }{2})=\sin (\dfrac{5}{2}\times \dfrac{\pi }{2}+\dfrac{\pi }{4})+2=-1+2=1$. 故选:$A$. 点评:本题考查$y=A\sin (\omega x+\varphi )$型函数的图象与性质,考查逻辑思维能力与运算求解能力,是中档题.
|