2021年高考数学新高考Ⅰ-21 |
|
2021-06-14 22:01:49 |
|
(12分)在平面直角坐标系xOy中,已知点F1(−√17,0),F2(√17,0),点M满足|MF1|−|MF2|=2.记M的轨迹为C. (1)求C的方程; (2)设点T在直线x=12上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|⋅|TB|=|TP|⋅|TQ|,求直线AB的斜率与直线PQ的斜率之和. 分析:(1)M的轨迹C是双曲线的右支,根据题意建立关于a,b,c的方程组,解出即可求得C的方程; (2)(法一)设出直线AB的参数方程,与双曲线方程联立,由参数的几何意义可求得|TA|⋅|TB|,同理求得|TP|⋅|TQ|,再根据|TA|⋅|TB|=|TP|⋅|TQ|,即可得出答案. (法二)设直线AB方程,将其与CD的方程联立,求出两根之和及两根之积,再表示出|AT|及|BT|,同理设出直线PQ的方程,表示出|PT|及|QT|,根据|TA|⋅|TB|=|TP|⋅|TQ|,代入化简后可得出结论. 解:(1)由双曲线的定义可知,M的轨迹C是双曲线的右支,设C的方程为x2a2−y2b2=1(a>0,b>0),x⩾1, 根据题意{c=√172a=2c2=a2+b2,解得{a=1b=4c=√17, ∴的方程为{x}^{2}-\dfrac{{y}^{2}}{16}=1(x\geqslant 1); (2)(法一)设T(\dfrac{1}{2},m),直线AB的参数方程为\left\{\begin{array}{l}{x=\dfrac{1}{2}+t\cos \theta }\\ {y=m+t\sin \theta }\end{array}\right., 将其代入C的方程并整理可得,(16\cos ^{2}\theta -\sin ^{2}\theta )t^{2}+(16\cos \theta -2m\sin \theta )t-(m^{2}+12)=0, 由参数的几何意义可知,\vert TA\vert =t_{1},\vert TB\vert =t_{2},则{t}_{1}{t}_{2}=\dfrac{{m}^{2}+12}{si{n}^{2}\theta -16co{s}^{2}\theta }=\dfrac{{m}^{2}+12}{1-17co{s}^{2}\theta }, 设直线PQ的参数方程为\left\{\begin{array}{l}{x=\dfrac{1}{2}+\lambda \cos \beta }\\ {y=m+\lambda \sin \beta }\end{array}\right.,\vert TP\vert =\lambda _{1},\vert TQ\vert =\lambda _{2},同理可得,{\lambda }_{1}{\lambda }_{2}=\dfrac{{m}^{2}+12}{1-17co{s}^{2}\beta }, 依题意,\dfrac{{m}^{2}+12}{1-17co{s}^{2}\theta }=\dfrac{{m}^{2}+12}{1-17co{s}^{2}\beta },则\cos ^{2}\theta =\cos ^{2}\beta, 又\theta \ne \beta,故\cos \theta =-\cos \beta,则\cos \theta +\cos \beta =0,即直线AB的斜率与直线PQ的斜率之和为0. (法二)设T(\dfrac{1}{2},t),直线AB的方程为y={k}_{1}(x-\dfrac{1}{2})+t,A(x_{1},y_{1}),B(x_{2},y_{2}),设\dfrac{1}{2}<{x}_{1}<{x}_{2}, 将直线AB方程代入C的方程化简并整理可得,(16-{{k}_{1}}^{2}){x}^{2}-({{k}_{1}}^{2}-2t{k}_{1})x-\dfrac{1}{4}{{k}_{1}}^{2}+{k}_{1}t-{t}^{2}-16=0, 由韦达定理有,{x}_{1}+{x}_{2}=\dfrac{{{k}_{1}}^{2}-2{k}_{1}t}{{{k}_{1}}^{2}-16},{x}_{1}{x}_{2}=\dfrac{-\dfrac{1}{4}{{k}_{1}}^{2}+{k}_{1}t-{t}^{2}-16}{{{16-k}_{1}}^{2}}, 又由A({x}_{1},{k}_{1}{x}_{1}-\dfrac{1}{2}{k}_{1}+t),T(\dfrac{1}{2},t)可得\vert AT\vert =\sqrt{1+{{k}_{1}}^{2}}({x}_{1}-\dfrac{1}{2}), 同理可得\vert BT\vert =\sqrt{1+{{k}_{1}}^{2}}({x}_{2}-\dfrac{1}{2}), \therefore\vert AT\vert \vert BT\vert =(1+{{k}_{1}}^{2})({x}_{1}-\dfrac{1}{2})({x}_{2}-\dfrac{1}{2})=\dfrac{(1+{{k}_{1}}^{2})({t}^{2}+12)}{{{k}_{1}}^{2}-16}, 设直线PQ的方程为y={k}_{2}(x-\dfrac{1}{2})+t,P({x}_{3},{y}_{3}),Q({x}_{4},{y}_{4}),设\dfrac{1}{2}<{x}_{3}<{x}_{4}, 同理可得\vert PT\vert \vert QT\vert =\dfrac{(1+{{k}_{2}}^{2})({t}^{2}+12)}{{{k}_{2}}^{2}-16}, 又\vert AT\vert \vert BT\vert =\vert PT\vert \vert QT\vert,则\dfrac{1+{{k}_{1}}^{2}}{{{k}_{1}}^{2}-16}=\dfrac{1+{{k}_{2}}^{2}}{{{k}_{2}}^{2}-16},化简可得{{k}_{1}}^{2}={{k}_{2}}^{2}, 又k_{1}\ne k_{2},则k_{1}=-k_{2},即k_{1}+k_{2}=0,即直线AB的斜率与直线PQ的斜率之和为0. 点评:本题考查双曲线的定义及其标准方程,考查直线与双曲线的位置关系,考查直线参数方程的运用,考查运算求解能力,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021xgk1/2021-06-14/33155.html |