(12分)已知公比大于1的等比数列$\{a_{n}\}$满足$a_{2}+a_{4}=20$,$a_{3}=8$. (1)求$\{a_{n}\}$的通项公式; (2)求$a_{1}a_{2}-a_{2}a_{3}+\ldots +(-1)^{n-1}a_{n}a_{n+1}$. 分析:(1)根据题意,列方程组$\left\{\begin{array}{l}{{a}_{2}+{a}_{4}=20}\\ {{a}_{3}={a}_{1}{q}^{2}=8}\end{array}\right.$,解得$a_{1}$和$q$,然后求出$\{a_{n}\}$的通项公式; (2)根据条件,可知$a_{1}a_{2}$,$-a_{2}a_{3}$,$\ldots (-1)^{n-1}a_{n}a_{n+1}$,是以$2^{3}$为首项,$-2^{2}$为公比的等比数列,由等比数列求和公式,即可得出答案. 解答:解:(1)设等比数列$\{a_{n}\}$的公比为$q(q>1)$, 则$\left\{\begin{array}{l}{{a}_{2}+{a}_{4}={a}_{1}q+{a}_{1}{q}^{3}=20}\\ {{a}_{3}={a}_{1}{q}^{2}=8}\end{array}\right.$, $\because q>1$,$\therefore$$\left\{\begin{array}{l}{{a}_{1}=2}\\ {q=2}\end{array}\right.$, $\therefore$${a}_{n}=2\centerdot {2}^{n-1}={2}^{n}$. (2)$a_{1}a_{2}-a_{2}a_{3}+\ldots +(-1)^{n-1}a_{n}a_{n+1}$ $=2^{3}-2^{5}+2^{7}-2^{9}+\ldots +(-1)^{n-1}\centerdot 2^{2n+1}$, $=\dfrac{{2}^{3}[1-(-{2}^{2})^{n}]}{1-({-2}^{2})}=\dfrac{8}{5}-(-1)^{n}\dfrac{{2}^{2n+3}}{5}$. 点评:本题考查等比数列的通项公式,前$n$项求和公式,考查转化思想和方程思想,属于基础题.
|