099. 设函数$f(x) = \left| {2x + 1} \right| - \left| {x - 4} \right|$.
(1)解不等式$f(x)>2$;
(2)求函数$y=f(x)$的最小值.
解:(1)令$y=\left| 2x+1 \right|-\left| x-4 \right|$,则$y=\left\{ \begin{align} & -x-5 ,& x\le -\dfrac{1}{2} \\ & 3x-3,& -\dfrac{1}{2}<x<4 \\ & x+5 ,& x\ge 4 \\ \end{align} \right.$,
作出函数$y=\left| 2x+1 \right|-\left| x-4 \right|$的图象,如图,它与直线$y=2$的交点为$(-7,2)$和$\left( \dfrac{5}{3},2 \right)$.
∴$\left| 2x+1 \right|-\left| x-4 \right|>2$的解集为$(-\infty ,-7)\bigcup \left( \dfrac{5}{3},+\infty \right)$.
(2)由函数$y=\left| 2x+1 \right|-\left| x-4 \right|$的图像可知,
当$x=-\dfrac{1}{2}$时,$y=f(x)$取得最小值$-\dfrac{9}{2}$.