024.已知角$\alpha $的终边经过$P\left( m,-3 \right)$,且$\cos \alpha =\dfrac{m}{5}$。
(1)判断角$\alpha $的象限,求$3\sin \alpha -4\tan \alpha $的值;
(2)化简$\dfrac{\sin \alpha }{\sqrt{1-{{\sin }^{2}}\alpha }}+\dfrac{\sqrt{1-{{\cos }^{2}}\alpha }}{\cos \alpha }$;
(3)求$\dfrac{\sin \left( 5\pi -\alpha \right)-\cos \left( \alpha -\dfrac{7\pi }{2} \right)}{\sin \left( \dfrac{5\pi }{2}+\alpha \right)-\cos \left( 3\pi -\alpha \right)}$的值。
解:(1)∵$r==\sqrt{{{m}^{2}}+{{(-3)}^{2}}}=\sqrt{{{m}^{2}}+9}$,
又$\cos \alpha =\dfrac{m}{5}=\dfrac{m}{\sqrt{{{m}^{2}}+9}}$,∴$m=\pm 4$,
∴点$P\left( \pm 4,-3 \right)$在第3、4象限,那么角$\alpha $是第3、4象限的角。
∵$r=5$,$\sin \alpha =\dfrac{y}{r}=\dfrac{-3}{5}=-\dfrac{3}{5}$,$\cos \alpha =\dfrac{x}{r}=\pm \dfrac{4}{5}$,
$\tan \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\pm \dfrac{3}{4}$,
∴$3\sin \alpha -4\tan \alpha $$=3\times (-\dfrac{3}{5})\pm 4\times \dfrac{3}{4}=\dfrac{6}{5}$或$-\dfrac{24}{5}$
(当角$\alpha $是第3象限时取负值,当角$\alpha $是第4象限时取正值)。
(2)$\dfrac{\sin \alpha }{\sqrt{1-{{\sin }^{2}}\alpha }}+\dfrac{\sqrt{1-{{\cos }^{2}}\alpha }}{\cos \alpha }$
$=\dfrac{\sin \alpha }{\left| \cos \alpha \right|}+\dfrac{\left| \sin \alpha \right|}{\cos \alpha }$$=\left\{ \begin{matrix} -2\tan \alpha ,当 \alpha 是第3象限时 \\ 0 ,当 \alpha 是第4象限时 \\\end{matrix} \right.$
(3)$\dfrac{\sin \left( 5\pi -\alpha \right)-2\cos \left( \alpha -\dfrac{7\pi }{2} \right)}{3\sin \left( \dfrac{7\pi }{2}+\alpha \right)+\cos \left( 3\pi -\alpha \right)}+\tan \left( \alpha -3\pi \right)$
$=\dfrac{\sin \alpha +2\sin \alpha }{-3\cos \alpha -\cos \alpha }+\tan \alpha $
$=-\dfrac{3\sin \alpha }{4\cos \alpha }+\tan \alpha =\dfrac{1}{4}\tan \alpha =\dfrac{1}{4}\left( \pm \dfrac{3}{4} \right)=\pm \dfrac{3}{16}$(当角$\alpha $是第3象限时取正值,当角$\alpha $是第4象限时取负值)。