解:(1)如图,连结`A_1B、AB_1`
`.:alpha_|_beta,alphannbeta=l`,`A A_1``_|_l`,`BB_1_|_l`
则`/_BAB_1、/_ABA_1`分别是`AB`与`alpha`和`beta`所成的角
`Rt△BB_1A`中,`BB_1=sqrt2`,`AB=2`
`:.sin/_BAB_1=(BB_1)/(AB)=sqrt2/2`
`:./_BAB_1=45°`
`Rt△A A_1B`中,`A A_1=1`,`AB=2`
`:.sin/_ABA_1`=`(A
A_1)/(AB)=1/2`
`:./_ABA_1=30°`
故直线`AB`分别与平面`alpha、beta`所成角分别是`45°、30°`
(2)方法一:`.:``BB_1``_|_alpha`,
`.:`平面`ABB_1``_|_alpha`,在平面`alpha`内过`A_1`作`A_1E_|_AB_1`交`AB_1于E`,则`A_1E``_|_`平面`AB_1B`
|
|
过`E`作`EF_|_AB`交`AB`于`F`,连结`A_1F`,则由三垂线定理得`A_1E_|_AB`
`:./_A_1FE`就是所求二面角的平面角
在`Rt△ABB_1`中,`/_BAB_1=45°`
`:.AB_1=B_1B=sqrt2`
在`Rt△A A_1B_1`中,`A
A_1`=`A_1B_1=1`
`:.A_1E`=`1/2AB_1=sqrt(2)/2`
在`Rt△A A_1B`中,`A_1B`=`sqrt(AB^2-A
A_1^2)=sqrt(4-1)=sqrt(3)`
由`A A_1`·`A_1B`=`A_1F·AB`,得`A_1F=(A A_1·A_1B)/(AB)=(1xxsqrt3)/2=sqrt(3)/2`
`:.`在`Rt△A_1EF`中,`sin/_A_1EF=(A_1E)/(A_1F)=sqrt(6)/3`
`:.`二面角`A_1-AB-B_1`的大小为`arcsin(sqrt6/3)`
方法二:
如图,建立坐标系.则`A_1(0,0,0),A(0,0,1),
B_1(0,1,0),B(sqrt(2),1,0)`
在`AB`上取一点`F(x,y,z)`,则存在`tinR`,使得`vec(AF)=tvec(AB)`
即`(x,y,z-1)=t(sqrt(2),1,-1)`
`:.`点`F`的坐标为`(sqrt(2)t,t,1-t)`
要使`vec(A_1F)_|_vec(AB)`,需`vec(A_1F)·vec(AB)=0`
即`(sqrt(2)t,t,1-t)·(sqrt(2),1,-1)=0`
即`2t+t-(1-t)=0`,解得`t=1/4`
点`F`的坐标为`(sqrt(2)/4,1/4,3/4)`
`:.vec(A_1F)=(sqrt(2)/4,1/4,3/4)`
设`E`为`AB_1`的中点,则点`E`的坐标为`(0,1/2,1/2)`
`:.vec(EF)=(sqrt(2)/4,-1/4,1/4)`
|
|
又`vec(EF)·vec(AB)=(sqrt(2)/4,-1/4,1/4)·(sqrt(2),1,-1)=1/2-1/4-1/4=0`
`:.vec(EF)_|_vec(AB)`
`:./_A_1FE`即为所求二面角的平面角
又`cos/_A_1FE=(vec(A_1F)·vec(EF))/(|vec(A_1F)||vec(EF)|)=((sqrt(2)/4,1/4,3/4)·(sqrt(2)/4,-1/4,1/4))/(sqrt(2/16+1/16+9/16)·sqrt(2/16+1/16+1/16))=(1/8-1/16+3/16)/(sqrt(3/4)·1/2)=1/sqrt(3)=sqrt3/3`
`:.`二面角`A_1-AB-B_1`的余弦值的大小为`arc cos(sqrt3/3)`
评注:求二面角大小一般首先找出或作出二面角的平面角,解法二用向量求二面角的大小也是一种有效方法.
|