2005年
解答题
(17)(本小题满分12分)
已知向量和,
且,求的值
(18) (本小题满分12分)
袋中装有罴球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人
从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取取后不放回,直到两人
中有一人取到白球时即终止 每个球在每一次被取出的机会是等可能的,用表示
取球终止时所需的取球次数.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求取球2次终止的概率;
(Ⅲ)求甲取到白球的概率
(19) (本小题满分12分)
已知是函数的一个极值点,其中.
(Ⅰ)求m与n的关系表达式;
(Ⅱ)求的单调区间;
(20) (本小题满分12分)
如图,已知长方体,,直线与平面
所成的角为,垂直于为的中点.
(Ⅰ)求异面直线与所成的角;
(Ⅱ)求平面与平面所成二面角(锐角)的大小;
(Ⅲ)求点到平面的距离
(21) (本小题满分12分)已知数列的首项前项和为,
且
(I)证明数列是等比数列;
(II)令,求函数在点处的导数
(22) (本小题满分14分)已知动圆过定点,且与直线相切,其中.
(I)求动圆圆心的轨迹的方程;
(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别
为和,当变化且时,证明直线恒过定点,并求出该定点的坐标
2006
解答题
(17)(本小题满分12分)
设函数f(x)=
(Ⅰ)求f(x)的单调区间;
(Ⅱ) 讨论f(x)的极值.
18.(本小题满分12分)
已知函数F(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<),且y=f(x)的最大值为2,
其图象相邻两对称轴间的距离为2,并过点(1,2).
(Ⅰ)求φ;
(Ⅱ)计算f(1)+f(2)+…+f(2008).
(19)(本小题满分12分)
盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,
每张卡片被抽出的可能性都相等,求:
(Ⅰ)抽出的3张卡片上最大的数字是4的概率;
(Ⅱ)抽出的3张中有2张卡片上的数字是3的概率;
(Ⅲ)抽出的3张卡片上的数字互不相同的概率.
(20) (本小题满分12分)
如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥CD,AC⊥BD,AC与BD
相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD.
(Ⅰ)求异面直线PD与BC所成角的余弦值;
(Ⅱ)求二面角P-AB-C的大小;
(Ⅲ)设点M在棱PC上,且为何值时,PC⊥平面BMD.
(21)(本小题满分12分)
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点
所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,
求直线l的方程.
(22)(本小题满分14分)
已知数列{}中,在直线y=x上,其中n=1,2,3….
(Ⅰ)令
(Ⅱ)求数列
(Ⅲ)设的前n项和。是否存在实数,使得
数列为等差数列?若存在,试求出;若不存在,则说明理由。
2007年
解答题
17.(本小题满分12分)
在中,角的对边分别为.
(1)求;
(2)若,且,求.
18.(本小题满分12分)
设是公比大于1的等比数列,为数列的前项和.已知,
且构成等差数列.
(1)求数列的等差数列.
(2)令求数列的前项和.
19.(本小题满分12分)
本公司计划2008年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用
不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定
甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元
和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益
最大,最大收益是多少万元?
20.(本小题满分12分)
如图,在直四棱柱中,
已知,.
(1)求证:;
(2)设是上一点,试确定的位置,
使平面
,并说明理由.
21.(本小题满分12分)
设函数,其中.
证明:当时,函数没有极值点;当时,函数有且只有
一个极值点,并求出极值.
22.(本小题满分14分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离
的最大值为3,最小值为1.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),且以
为直径的图过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。