解答题
(17)(本题满分12分)
已知α是第一象限的角,且cosα=的值.
18.(本题满分12分)
如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘
渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南
偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向
沿直线前往B处救援(角度精确到1)?
19.(本题满分14分)本题共有2个小题,第1小题满分5分. 第2小题满分9分.
在直三棱柱ABC-A1B1C1中,∠ABC=90°.AB=BC=1,
(1)求异面直线B1C1与AC所成角的大小;
(2)若直线A1C与平面ABC所成角为45°.求三棱柱A1-ABC的结果.
20(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
设数列{an}的前n项和为Sn,且对任意正整数n,an+Sn=4096.
(1)求数列{an}的通项公式:
(2)设数列{log2an}的前n项和为Tn.对数列{Tn},从第几项起Tn<-509?
21.(本题满分16分)本题共有3个小题,第4小题满分4分.第2小题满分5分,
第3小题满分7分.
已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为
F(-,0).且右顶点为D(2,0),设点A的坐标是(1,).
(1)求该椭圆的标准方程.
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B、C.求△ABC面积的最大值.
22.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
已知函数y=x+有如下性质,如果常数a>0,那么该函数在]上是
减函数,在[,+∞)上是增函数.
(1)如果函数y=x+在(0,4]上是减函数,在[4,+∞)上是增函数,
求实常数b的值;
(2)设常数c∈[1,4],求函数f(x)=x+(1≤x≤2)的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn-(c>0)的单调性,并说明理由.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。