解答题
17.(本小题满分12分)
已知函数F(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<),且y=f(x)的最大值为2,
其图象相邻两对称轴间的距离为2,并过点(1,2).
(Ⅰ)求φ;
(Ⅱ)计算f(1)+f(2)+…+f(2008).
18.(本小题满分12分)
设函数f(x)=ax-(a+1)ln(x+1),其中a≥-1.求f(x)的单调区间.
19.(本小题满分12分)
如图,已知平面A1B1C1平行于三棱锥V-ABC的底面ABC,等边△AB1C
所在的平面与底面ABC垂直,且∠ACB=90°.设AC=2a,BC=a.
(Ⅰ)求证直线B1C1是异面直线AB1与A1C1的公垂线;
(Ⅱ)求点A到平面VBC的距离;
(Ⅲ)求二面角A-VB-C的大小.
20.(本小题满分12分)
袋中装着标有数字1,2,3,4,5的小球各2个.从袋中任取3个小球,
按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,
用ξ表示取出的3个小球上的最大数字,求:
(Ⅰ)取出的3个小球上的数字互不相同的概率;
(Ⅱ)随机变量ξ的概率分布和数学期望;
(Ⅲ)计分介于20分到40分之间的概率.
21.(本小题满分12分)
双曲线C与椭圆有相同的焦点,直线y=x为C的一条渐近线.
(Ⅰ)求双曲线C的方程;
(Ⅱ)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点
(Q点与C的顶点不重合).当=λ1=λ2,且λ1+λ2=时,求Q点的坐标.
22.(本小题满分14分)
已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….
(Ⅰ)证明数列{lg(1+an)}是等比数列;
(Ⅱ)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;
(Ⅲ)记bn=,求数列{bn}的前n项和Sn,并证明Sn+=1.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。