解答题
16.(本小题满分12分)
如图3,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.
(Ⅰ)证明:sinα+cos2β=0;
(Ⅱ)若AC=DC,求β的值.
17.(本小题满分12分)
某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,
则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格
是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率
是0.8,计算(结果精确到0.01):
(Ⅰ)恰好有两家煤矿必须整改的概率;
(Ⅱ)平均有多少家煤矿必须整改;
(Ⅲ)至少关闭一家煤矿的概率.
18.(本小题满分14分)
如图4,己知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.
(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.
19.(本小题满分14分)
已知函数f(x)=x-sinx,数列{an}满足:0<a1<1,an+1=f(an),n=1,2,3,….
证明:(Ⅰ)0<an+1<an<1;(Ⅱ)an+1<an3.
20.(本小题满分14分)
对1个单位质量的含污物体进行清洗,清洗前其清洁度(含污物体的清洁度定义为:
1-)为0.8,要求洗完后的清洁度是0.99.有两种方案可供选择,方案
甲:一次清洗;方案乙:分两次清洗.该物体初次清洗后受残留水等因素影响,其
质量变为a(1≤a≤3).设用x单位质量的水初次清洗后的清洁度是(x>a-1),用
y单位质量的水第二次清洗后的清洁度是,其中c(0.8<c<0.99)是该物体初次清
洗后的清洁度.
(Ⅰ)分别求出方案甲以及c=0.95时方案乙的用水量,并比较哪一种方案用水量较少;
(Ⅱ)若采用方案乙,当a为某定值时,如何安排初次与第二次清洗的用水量,使总用水
量最少?并讨论a取不同数值时对最少总用水量多少的影响.
21.(本小题满分14分)
已知椭圆C1:=1,抛物线C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB过椭圆
C1的右焦点.
(Ⅰ)当AB⊥x轴时,求m、p的值,并判断抛物线C2的焦点是否在直线AB上;
(Ⅱ)是否存在m、p的值,使抛物线C2的焦点恰在直线AB上?若存在,求出符合条件的
m、p的值;若不存在,请说明理由.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。