解答题

15.(本小题满分14分)

已知函数

   (Ⅰ)求f(x)的最小正周期:

   (Ⅱ)求f(x)的最大值和最小值:

   (Ⅲ)若sin2的值。

 解答

16.(本小题满分12分)

    某运动员射击一次所得环数X的分布如下:

X

0-6

7

8

9

10

p

0

0.2

0.3

0.3

0.2

现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为

(Ⅰ)求该运动员两次都命中7环的概率:

(Ⅱ)求的分布列:

(Ⅲ)求的数学期望E

 解答

17.(本小题满分14分)

    如图所示,AFDE分别是⊙、⊙1的直径。AD与两圆所在的平面均

垂直,AD=8BC是⊙的直径,AB=AC=6OE//AD

    (Ⅰ)求二面角B-AD-F的大小;

    (Ⅱ)求直线BDEF所成的角。

解答

18.(本小题满分14分)

    设函数f(x)=-x3+3x+2分别在x1x2处取得极小值、极大值。xoy平面

上点AB的坐标分别为(x1f(x1))、(x2f(x2))。该平面上动点P

,点Q是点P关于直线y=2(x-4)的对称点,求:

(Ⅰ)点AB的坐标:

(Ⅱ)动点Q的轨迹方程。

解答

19.(本小题满分14分)

已知公比为q(0q1)的无穷等比数列{an}各项的和为9,无穷等比

数列{an2}各项的和为

(Ⅰ)求数列{an}的首项a1和公比q

(Ⅱ)对给定的k(k=1,2,,n),T{k}是首项为ak,公差为2ak-1

等差数列,求数列T{2}的前10项之和:

(Ⅲ)设bi为数列的第i项,sn=b1+b2+…+bn,求sn,并求正整数

m(m1),使得存在且不等于零。

(注:无穷等比数列各项的和即当n时该无穷等比数列前n项和的极限)

解答

20.(本小题满分12分)

A是由定义在[24]上且满足如下条件的函数x)组成的集合:

①对任意的都有(2x);②存在常数L0L1),

使得对任意的x1,x2[12],都有|2x1- (2x2)|.

(Ⅰ)设x=证明:xA:

 ()x,如果存在x0(1,2),使得x0=2x0,

那么这样的x0是唯一的:

(Ⅲ)设任取x1(1,2),xn+1=2xn,n=1,2……证明:给定

正整数k,对任意的正整数p,成立不等式

解答

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574