解答题
(15)(本小题共12分)
已知函数f(x)=.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设α是第四象限的角,且tanα= -,求f(α)的值.
(16)(本小题共13分)
已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经
过点(1,0),(2,0),如图所示.求:
(Ⅰ)x0的值;
(Ⅱ)a,b,c的值.
(17)(本小题共14分)
如图,ABCD-A1B1C1D1是正四棱柱.
(Ⅰ)求证:BD⊥平面ACC1A1;
(Ⅱ)若二面角C1-BD-C的大小为60°,求异面直线BC1与AC所成角的大小.
(18)(本小题共13分)
某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过:
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,
且三门课程考试是否及格相互之间没有影响.求:
(Ⅰ)该应聘者用方案一考试通过的概率;
(Ⅱ)该应聘者用方案二考试通过的概率.
(19)(本小题共14分)
椭圆C:=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且
PF1⊥F1F2,|PF1|=,|PF2|=.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心M,交椭圆C于A,B两点,且A,B
关于点M对称,求直线l的方程.
(20)(本小题共14分)
设等差数列{an}的首项a1及公差d都为整数,前n项和为Sn.
(Ⅰ)若a11=0,S14=98,求数列{an}的通项公式;
(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{an}的通项公式.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。