解答题
(17)(本大题满分12分)
设函数图像的一条对称轴是直线
(Ⅰ)求;
(Ⅱ)求函数的单调增区间;
(Ⅲ)证明直线于函数的图像不相切
(18)(本大题满分12分)
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,
且PA=AD=DC=AB=1,M是PB的中点
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小
(19)(本大题满分12分)
设等比数列的公比为,前n项和
(Ⅰ)求的取值范围;
(Ⅱ)设,记的前n项和为,试比较与的大小
(20)(本大题满分12分)
9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少
有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑
需要补种假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,
写出ξ的分布列并求ξ的数学期望(精确到)
(21)(本大题满分14分)
已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线
交椭圆于A、B两点,与共线
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且,证明为定值
(22)(本大题满分12分)
(Ⅰ)设函数,求的最小值;
(Ⅱ)设正数满足,证明
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。