解答题
22.(本小题满分14分)
如图,设抛物线的焦点为F,动点P在直线上运动,
过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.
解:(1)设切点A、B坐标分别为,
∴切线AP的方程为:
切线BP的方程为:
解得P点的坐标为:
所以△APB的重心G的坐标为 ,
所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:
(2)方法1:因为
由于P点在抛物线外,则
∴
同理有
∴∠AFP=∠PFB.
方法2:①当所以P点坐标
为,则P点到直线AF的距离为:
即
所以P点到直线BF的距离为:
所以d1=d2,即得∠AFP=∠PFB.
②当时,直线AF的方程:
直线BF的方程:
所以P点到直线AF的距离为:
,
同理可得到P点到直线BF的距离,
因此由d1=d2,可得到∠AFP=∠PFB
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。