解答题
全国卷Ⅰ(文)
(18)(本大题满分12分)
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,
且PA=AD=DC=AB=1,M是PB的中点
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小
全国卷Ⅱ(文)
(18) (本小题满分12分)
甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.60,
本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.
(Ⅰ)前三局比赛甲队领先的概率;
(Ⅱ)本场比赛乙队以3:2取胜的概率.
(精确到0.001)
全国卷Ⅲ(文)
(18)(本小题满分12分)
设甲、乙、丙三台机器是否需要照顾相互之间没有影响已知在某一小时内,甲、
乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照
顾的概率为0.125,
(Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少;
(Ⅱ)计算这个小时内至少有一台需要照顾的概率
北京卷(文)
(16)(本小题共14分)
如图, 在直三棱柱中, ,
点为的中点
(Ⅰ)求证;
(Ⅱ) 求证;
(Ⅲ)求异面直线与所成角的余弦值
天津卷(文)
(18)(本小题满分12分)
若公比为c的等比数列的首项且满足(n3,4,…)
(Ⅰ)求c的值;
(Ⅱ)求数列的前n项和
上海卷(文)
18.(本题满分12分)在复数范围内解方程(为虚数单位)
辽宁卷
18.(本小题满分12分)
如图,在直径为1的圆O中,作一关于圆心对称、
邻边互相垂直的十字形,其中
(Ⅰ)将十字形的面积表示为的函数;
(Ⅱ)为何值时,十字形的面积最大?最大面积是多少?
江苏卷
20.(本小题满分12分,每小问满分4分)甲.乙两人各射击一次,
击中目标的概率分别是和假设两人射击是否击中目标,相互之间没有影响;
每人各次射击是否击中目标,相互之间也没有影响
⑴求甲射击4次,至少1次未击中目标的概率;
⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
⑶假设某人连续2次未击中目标,则停止射击问:乙恰好射击5次后,被中止
射击的概率是多少?
浙江卷(文)
16.已知实数成等差数列,成等比数列,且,求
福建卷(文)
18.(本小题满分12分)
甲、乙两人在罚球线投球命中的概率分别为,投中得1分,投不中得0分.
(Ⅰ)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;
(Ⅱ)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率;
湖北卷(文)
18.(本小题满分12分)
在△ABC中,已知,求△ABC的面积
湖南卷(文)
17.(本小题满分12分)
已知在△ABC中,sinA(sinB+cosB)-sinC=0,sinB+cos2C=0,
求角A、B、C的大小.
广东卷
16.(本小题满分14分)
如图3所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=.
F是线段PB上一点,,点E在线段AB上,且EF⊥PB.
(Ⅰ)证明:PB⊥平面CEF;
(Ⅱ)求二面角B—CE—F的大小.
重庆卷(文)
18.(本小题满分13分)
加工某种零件需经过三道工序,设第一、二、三道工序的合格率分别为、、,
且各道工序互不影响.
(Ⅰ)求该种零件的合格率;
(Ⅱ)从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的
概率.
山东卷(文)
(18) (本小题满分12分)
袋中装有罴球和白球共7个,从中任取2个球都是白球的概率为.现有甲、乙两人
从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取取后不放回,直到两人
中有一人取到白球时即终止 每个球在每一次被取出的机会是等可能的,用表示
取球终止时所需的取球次数.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求取球2次终止的概率;
(Ⅲ)求甲取到白球的概率
江西卷(文)
18.(本小题满分12分)
已知向量.
求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。