解答题
全国卷Ⅰ(理)
(21)(本大题满分14分)
已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线
交椭圆于A、B两点,与共线
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且,证明为定值
全国卷Ⅱ(理)
(21)(本小题满分14分)
P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知
与共线,与共线,且.求四边形PMQN的面积的最小值和最大值.
全国卷Ⅲ(理)
21.(本小题满分14分)
设.两点在抛物线上,是的垂直平分线
1)当且仅当取何值时,直线经过抛物线的焦点?证明你的结论;
2)当直线的斜率为2时,求在轴上截距的取值范围
北京卷(理)
19 (本小题共12分)
设数列的首项,且,记
(Ⅰ)求
(Ⅱ)判断数列是否为等比数列,并证明你的结论;
(Ⅲ)求
天津卷(理)
(21)(本小题满分14分)
抛物线C的方程为,过抛物线C上一点P(x0,y0)(x0≠0)作斜率
为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互
不相同),且满足
(Ⅰ)求抛物线C的焦点坐标和准线方程
(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上
(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标
的取值范围
上海卷(理)
21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分,
第3小题满分6分
对定义域是.的函数.,
规定:函数
(1)若函数,,写出函数的解析式;
(2)求问题(1)中函数的值域;
(3)若,其中是常数,且,请设计一个定义域为R的函数
,及一个的值,使得,并予以证明
辽宁卷
21.(本小题满分14分)
已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),
Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,
并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
江苏卷
23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分)
设数列的前项和为,已知,且
,其中A.B为常数
⑴求A与B的值;
⑵证明:数列为等差数列;
⑶证明:不等式对任何正整数都成立
浙江卷(理)
19.袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,
从B中摸出一个红球的概率为p.
(Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好
摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的
分布率及数学期望E.
(Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸
出一个红球的概率是,求p的值.
福建卷(理)
21.(本小题满分12分)
已知方向向量为v=(1,)的直线l过点(0,-2)和
椭圆C:的焦点,且椭圆C的中心关于直线l的对称点
在椭圆C的右准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,
满足cot∠MON≠0(O为原点).若存在,求直线m的方程;
若不存在,请说明理由.
湖北卷(理)
21.(本小题满分12分)
设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的
垂直平分线与椭圆相交于C、D两点
(Ⅰ)确定的取值范围,并求直线AB的方程;
(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由
湖南卷(理)
20.(本小题满分14分)
自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察
其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,
n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成
正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量
保持不变?(不要求证明)
(Ⅱ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,
则捕捞强度b的最大允许值是多少?证明你的结论.
广东卷
19.(本小题满分14分)
设函数,
且在闭区间[0,7]上,只有
(Ⅰ)试判断函数的奇偶性;
(Ⅱ)试求方程在闭区间[-2005,2005]上的根的个数,并证明你的结论.
重庆卷(理)
21.(本小题满分12分)
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,
而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2
的两个交点A和B满足(其中O为原点),求k的取值范围.
山东卷(理)
(21) (本小题满分12分)已知数列的首项前项和为,
且
(I)证明数列是等比数列;
(II)令,求函数在点处的导数
并比较与的大小
江西卷(理)
21.(本小题满分12分)
已知数列
(1)证明
(2)求数列的通项公式an.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。