解答题

全国卷Ⅰ()

20)(本大题满分12分)

9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少

1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑

需要补种假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,

写出ξ的分布列并求ξ的数学期望(精确到

 解答

全国卷Ⅱ()

(20)(本小题满分12分)

     如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD,E、F分别

     为CD、PB的中点.

    (Ⅰ)求证:EF垂直于平面PAB;

    (Ⅱ)设AB=BC,求AC与平面AEF所成的角的大小.

 

解答

全国卷Ⅲ()

20.(本小题满分12分)

    在等差数列{an}中,公差d≠0,且a2是a1和a4的等比中项,已知a1,a3,

成等比数列,求数列k1,k2,k3,…,kn的通项kn 

解答

北京卷()

18 (本小题共14分)

     如图,直线与直线之间的阴影区域(不含边界)记为,

     其左半部分记为,右半部分记为

      (Ⅰ)分别有不等式组表示

      (Ⅱ)若区域中的动点的距离

     之积等于,求点的轨迹的方程;

      (Ⅲ)设不过原点的直线与(Ⅱ)中的曲线

     相交于两点,且与分别交于两点.

     求证△的重心与△的重心重合

解答

天津卷()

(20)(本小题满分12)

    某人在一山坡P处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),

    塔所在的山高OB=220(米),OA=200(米),

    图中所示的山坡可视为直线且点P在直线上,

    与水平地面的夹角为 ,tan=1/2试问此人

    距水平地面多高时,观看塔的视角∠BPC最大

   (不计此人的身高) 

解答

上海卷()

20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分

假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房预计

在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新

建住房中,中低价房的面积均比上一年增加50万平方米那么,到那一年底,

(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少

于4750万平方米?

(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?

解答

辽宁卷

   

 20.(本小题满分12分)

 某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,

 两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对

 每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.

   (Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,

    分别求生产出的甲、乙产品为一等品的概率P甲、P乙;

   (Ⅱ)已知一件产品的利润如表二所示,用ξ、

         η分别表示一件甲、乙产品的利润,在

        (I)的条件下,求ξ、η的分布列及

Eξ、Eη;

   (Ⅲ)已知生产一件产品需用的工人数和资金额

         如表三所示.该工厂有工人40名,可用资

         金60万元.设x、y分别表示生产甲、乙产

         品的数量,在(II)的条件下,x、y为何

         值时,最大?最大值是多少?

        (解答时须给出图示)                    

     解答

 

江苏卷

22.(本小题满分14分,第一小问满分4分,第二小问满分10分)

已知,函数

  ⑴当时,求使成立的的集合;

  ⑵求函数在区间上的最小值

解答

浙江卷()

18.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,

OP⊥底面ABC.

   (Ⅰ)当k=时,求直线PA与平面PBC所成角的大小;

   (Ⅱ) 当k取何值时,O在平面PBC内的射影恰好

   为△PBC的重心? 

解答

福建卷()

20.(本小题满分12分)

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,

F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证AE⊥平面BCE;

 (Ⅱ)求二面角B—AC—E的大小;

 (Ⅲ)求点D到平面ACE的距离.

 

解答

湖北卷()

20.(本小题满分12分)

如图,在四棱锥P—ABC右,底面ABCD为矩形,侧棱PA⊥底面ABCD,

AB=,BC=1,PA=2,E为PD的中点

(Ⅰ)求直线AC与PB所成角的余弦值;

(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,

并求出N点到AB和AP的距离

解答

湖南卷()

19.(本小题满分14分)

已知椭圆C:=1(a>b>0)的左.右焦点为F1、F2,离心率为e.

直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公

共点,P是点F1关于直线l的对称点,设=λ.

   (Ⅰ)证明:λ=1-e2;

   (Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.

解答

广东卷

18.(本小题满分12分)

箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s:t.

现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则

将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n次,

以ξ表示取球结束时已取到白球的次数.

   (Ⅰ)求ξ的分布列;

   (Ⅱ)求ξ的数学期望.

解答

重庆卷()

20.(本小题满分13分)

    如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,

    EA⊥EB1,已知AB=,BB1=2,BC=1,∠BCC1=,求:

   (Ⅰ)异面直线AB与EB1的距离;

   (Ⅱ)二面角A—EB1—A1的平面角的正切值.

  

 

山东卷()

(20) (本小题满分12分)

如图,已知长方体,直线与平面

所成的角为垂直的中点.

(Ⅰ)求异面直线所成的角;

(Ⅱ)求平面与平面所成二面角(锐角)的大小;

(Ⅲ)求点到平面的距离 

解答

江西卷()

20.(本小题满分12分)

如图,在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.

   (1)证明:D1E⊥A1D;

   (2)当E为AB的中点时,求点E到面ACD1的距离;

   (3)AE等于何值时,二面角D1—EC—D的大小为.

      解答

 

 

 

 

 

 

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574