解答题
全国卷Ⅰ(理)
(20)(本大题满分12分)
9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少
有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑
需要补种假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,
写出ξ的分布列并求ξ的数学期望(精确到)
全国卷Ⅱ(理)
(20)(本小题满分12分)
如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD,E、F分别
为CD、PB的中点.
(Ⅰ)求证:EF垂直于平面PAB;
(Ⅱ)设AB=BC,求AC与平面AEF所成的角的大小.
全国卷Ⅲ(理)
20.(本小题满分12分)
在等差数列{an}中,公差d≠0,且a2是a1和a4的等比中项,已知a1,a3,
成等比数列,求数列k1,k2,k3,…,kn的通项kn
北京卷(理)
18 (本小题共14分)
如图,直线与直线之间的阴影区域(不含边界)记为,
其左半部分记为,右半部分记为
(Ⅰ)分别有不等式组表示和
(Ⅱ)若区域中的动点到的距离
之积等于,求点的轨迹的方程;
(Ⅲ)设不过原点的直线与(Ⅱ)中的曲线
相交于两点,且与分别交于两点.
求证△的重心与△的重心重合
天津卷(理)
(20)(本小题满分12)
某人在一山坡P处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),
塔所在的山高OB=220(米),OA=200(米),
图中所示的山坡可视为直线且点P在直线上,
与水平地面的夹角为 ,tan=1/2试问此人
距水平地面多高时,观看塔的视角∠BPC最大
(不计此人的身高)
上海卷(理)
20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分
假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房预计
在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,另外,每年新
建住房中,中低价房的面积均比上一年增加50万平方米那么,到那一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少
于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
辽宁卷
20.(本小题满分12分)
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,
两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对
每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,
分别求生产出的甲、乙产品为一等品的概率P甲、P乙;
(Ⅱ)已知一件产品的利润如表二所示,用ξ、
η分别表示一件甲、乙产品的利润,在
(I)的条件下,求ξ、η的分布列及
Eξ、Eη;
(Ⅲ)已知生产一件产品需用的工人数和资金额
如表三所示.该工厂有工人40名,可用资
金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何
值时,最大?最大值是多少?
(解答时须给出图示)
江苏卷
22.(本小题满分14分,第一小问满分4分,第二小问满分10分)
已知,函数
⑴当时,求使成立的的集合;
⑵求函数在区间上的最小值
浙江卷(理)
18.如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,
OP⊥底面ABC.
(Ⅰ)当k=时,求直线PA与平面PBC所成角的大小;
(Ⅱ) 当k取何值时,O在平面PBC内的射影恰好
为△PBC的重心?
福建卷(理)
20.(本小题满分12分)
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,
F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B—AC—E的大小;
(Ⅲ)求点D到平面ACE的距离.
湖北卷(理)
20.(本小题满分12分)
如图,在四棱锥P—ABC右,底面ABCD为矩形,侧棱PA⊥底面ABCD,
AB=,BC=1,PA=2,E为PD的中点
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,
并求出N点到AB和AP的距离
湖南卷(理)
19.(本小题满分14分)
已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e.
直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公
共点,P是点F1关于直线l的对称点,设=λ.
(Ⅰ)证明:λ=1-e2;
(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.
广东卷
18.(本小题满分12分)
箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s:t.
现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则
将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n次,
以ξ表示取球结束时已取到白球的次数.
(Ⅰ)求ξ的分布列;
(Ⅱ)求ξ的数学期望.
重庆卷(理)
20.(本小题满分13分)
如图,在三棱柱ABC—A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,
EA⊥EB1,已知AB=,BB1=2,BC=1,∠BCC1=,求:
(Ⅰ)异面直线AB与EB1的距离;
(Ⅱ)二面角A—EB1—A1的平面角的正切值.
山东卷(理)
(20) (本小题满分12分)
如图,已知长方体,,直线与平面
所成的角为,垂直于为的中点.
(Ⅰ)求异面直线与所成的角;
(Ⅱ)求平面与平面所成二面角(锐角)的大小;
(Ⅲ)求点到平面的距离
江西卷(理)
20.(本小题满分12分)
如图,在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC—D的大小为.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。