解答题

15.(本小题满分12分)

化简

并求函数的值域和最小正周期.

解答

16.(本小题满分14分)

如图3所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=.

F是线段PB上一点,,点E在线段AB上,且EF⊥PB.

   (Ⅰ)证明:PB⊥平面CEF;

   (Ⅱ)求二面角B—CE—F的大小.

 

 

 

解答

17.(本小题满分14分)

在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B

满足AO⊥BO(如图4所示).

   (Ⅰ)求△AOB的重心G(即三角形三条

    中线的交点)的轨迹方程;

   (Ⅱ)△AOB的面积是否存在最小值?若存在,

    请求出最小值;若不存在,请说明理由.

 

解答

18.(本小题满分12分)

箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s:t.

现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则

将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n次,

以ξ表示取球结束时已取到白球的次数.

   (Ⅰ)求ξ的分布列;

   (Ⅱ)求ξ的数学期望.

解答

19.(本小题满分14分)

设函数

且在闭区间[0,7]上,只有

   (Ⅰ)试判断函数的奇偶性;

   (Ⅱ)试求方程在闭区间[-2005,2005]上的根的个数,并证明你的结论.

解答

20.(本小题满分14分)

在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、

y轴的正半轴上,A点与坐标原点重合(如图5所示).将矩形折叠,使A点落

在线段DC上.

    (Ⅰ)若折痕所在直线的斜率为k,

     试写出折痕所在直线的方程;

    (Ⅱ)求折痕的长的最大值.

  

     解答

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574