解答题
(17)(本题满分12分)
已知数列的前n项和为
(Ⅰ)求;
(Ⅱ)求证数列是等比数列。
(18)(本题满分12分)
在ΔABC中,角A、B、C所对的边分别为a、b、c,且。
(Ⅰ)求的值;
(Ⅱ)若,求bc的最大值。
(19)(本题满分12分)
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,
AB=,AF=1,M是线段EF的中点。
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求证AM⊥平面BDF;
(Ⅲ)求二面角A—DF—B的大小;
解答 D
(20)(本题满分12分)
某地区有5个工厂,由于用电紧缺,规定每个工厂在一周内必须选择
某一天停电(选哪一天是等可能的)。假定工厂之间的选择互不影响。
(Ⅰ)求5个工厂均选择星期日停电的概率;
(Ⅱ)求至少有两个工厂选择同一天停电的概率。
(21)(本题满分12分)
已知a为实数,
(Ⅰ)求导数;
(Ⅱ)若,求在[--2,2] 上的最大值和最小值;
(Ⅲ)若在(--∞,--2]和[2,+∞)上都是递增的,求a的取值范围。
(22)(本题满分14分)
解:已知双曲线的中心在原点,右顶点为A(1,0)点P、Q在双
曲线的右支上,支M(m,0)到直线AP的距离为1。
(Ⅰ)若直线AP的斜率为k,且,求实数m的
取值范围;
(Ⅱ)当时,ΔAPQ的内心恰好是点M,求此双曲
线的方程。
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。