21. (12分)设函数 其中常数m为整数.
(1) 当m为何值时,
(2) 定理: 若函数g(x) 在[a, b ]上连续,且g(a) 与g(b)异号,则至少
存在一点x0∈(a,b),使g(x0)=0.
试用上述定理证明:当整数m>1时,方程f(x)= 0,
在[e-m-m ,e2m-m ]内有两个实根.
(I)解:函数f(x)=x-ln(x+m),x∈(-m,+∞)连续,且
当x∈(-m,1-m)时,f ’(x)<0,f(x)为减函数,f(x)>f(1-m)
当x∈(1-m, +∞)时,f ’(x)>0,f(x)为增函数,f(x)>f(1-m)
根据函数极值判别方法,f(1-m)=1-m为极小值,而且
对x∈(-m, +∞)都有f(x)≥f(1-m)=1-m
故当整数m≤1时,f(x) ≥1-m≥0
(II)证明:由(I)知,当整数m>1时,f(1-m)=1-m<0,
函数f(x)=x-ln(x+m),在 上为连续减函数.
由所给定理知,存在唯一的
而当整数m>1时,
类似地,当整数m>1时,函数f(x)=x-ln(x+m),在 上为连续增函数
且 f(1-m)与异号,由所给定理知,存在唯一的
故当m>1时,方程f(x)=0在内有两个实根。
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。