三、解答题
(22)(本题15分)设,对任意实数,记.
(I)求函数的单调区间;
(II)求证:(ⅰ)当时,对任意正实数成立;
(ⅱ)有且仅有一个正实数,使得对任意正实数成立.
本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,
以及综合运用所学知识分析和解决问题的能力.满分15分.
(I)解:.
由,得
.
因为当时,,
当时,,
当时,,
故所求函数的单调递增区间是,,
单调递减区间是.
(II)证明:(i)方法一:
令,则
,
当时,由,得,
当时,,
所以在内的最小值是.
故当时,对任意正实数成立.
方法二:
对任意固定的,令,则
,
由,得.
当时,.
当时,,
所以当时,取得最大值.
因此当时,对任意正实数成立.
(ii)方法一:
.
由(i)得,对任意正实数成立.
即存在正实数,使得对任意正实数成立.
下面证明的唯一性:
当,,时,
,,
由(i)得,,
再取,得,
所以,
即时,不满足对任意都成立.
故有且仅有一个正实数,
使得对任意正实数成立.
方法二:对任意,,
因为关于的最大值是,所以要使对任意正实数成立的充分
必要条件是:
,
即, ①
又因为,不等式①成立的充分必要条件是,
所以有且仅有一个正实数,
使得对任意正实数成立.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。