三、解答题
20.(本小题满分12分)
已知函数,其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求函数的单调区间与极值.
本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究
函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分.
(Ⅰ)解:当时,,,
又,.
所以,曲线在点处的切线方程为,
即.
(Ⅱ)解:.
由于,以下分两种情况讨论.
(1)当时,令,得到,.当变化时,的变化
情况如下表:
|
|
|
|
|
|
|
|
0 |
|
0 |
|
|
|
极小值 |
|
极大值 |
|
所以在区间,内为减函数,在区间内为增函数.
函数在处取得极小值,且,
函数在处取得极大值,且.
(2)当时,令,得到,当变化时,的变化情况如下表:
|
|
|
|
|
|
|
|
0 |
|
0 |
|
|
|
极大值 |
|
极小值 |
|
所以在区间,内为增函数,在区间内为减函数.
函数在处取得极大值,且.
函数在处取得极小值,且.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。