三.解答题
21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分5分,
第3小题满分9分.
我们把由半椭圆 与半椭圆 合成的曲线称作
“果圆”,其中,,.
如图,设点,,是相应椭圆的焦点,,和,是“果圆” 与,轴的
交点,是线段的中点.
(1)若是边长为1的等边三角形,求该
“果圆”的方程;
(2)设是“果圆”的半椭圆
上任意一点.求证:当取得最小值时,
在点或处;
(3)若是“果圆”上任意一点,求取得最小值时点的横坐标.
解:(1) ,
,
于是,
所求“果圆”方程为,.
(2)设,则
,
, 的最小值只能在或处取到.
即当取得最小值时,在点或处.
(3),且和同时位于“果圆”的半椭圆
和半椭圆上,所以,由(2)知,只需研究位于“果圆”的
半椭圆上的情形即可.
.
当,即时,的最小值在时取到,
此时的横坐标是.
当,即时,由于在时是递减的,
的最小值在时取到,此时的横坐标是.
综上所述,若,当取得最小值时,点的横坐标是;
若,当取得最小值时,点的横坐标是或.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。