三、解答题

21.(本小题满分12分)

设动点到点的距离分别为,且存在常数

使得

(1)证明:动点的轨迹为双曲线,并求出的方程;

(2)过点作直线双曲线的右支于两点,

试确定的范围,使,其中点为坐标原点.

解法一:(1)在中,,即

,即(常数),

的轨迹是以为焦点,实轴长的双曲线.

方程为:

(2)设

①当垂直于轴时,的方程为在双曲线上.

,因为,所以

②当不垂直于轴时,设的方程为

得:

由题意知:

所以

于是:

因为,且在双曲线右支上,所以

由①②知,

解法二:(1)同解法一

(2)设的中点为

①当时,

因为,所以

②当时,

.所以

,由第二定义得

所以

于是由

因为,所以,又

解得:.由①②知

 

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574