三、解答题

20.(本小题满分12分)

已知双曲线的左、右焦点分别为,过点的动直线与双曲线

相交于两点.

(I)若动点满足(其中为坐标原点),求点的轨迹方程;

(II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;

若不存在,请说明理由.

解:由条件知,设

解法一:(I)设,则

,由

于是的中点坐标为

不与轴垂直时,,即

又因为两点在双曲线上,所以,两式相减得

,即

代入上式,化简得

轴垂直时,,求得,也满足上述方程.

所以点的轨迹方程是

(II)假设在轴上存在定点,使为常数.

不与轴垂直时,设直线的方程是

代入

是上述方程的两个实根,所以

于是

因为是与无关的常数,所以,即,此时=

轴垂直时,点的坐标可分别设为

此时

故在轴上存在定点,使为常数.

解法二:(I)同解法一的(I)有

不与轴垂直时,设直线的方程是

代入

是上述方程的两个实根,所以

由①②③得.…………………………………………………④

.……………………………………………………………………⑤

时,,由④⑤得,,将其代入⑤有

.整理得

时,点的坐标为,满足上述方程.

轴垂直时,,求得,也满足上述方程.

故点的轨迹方程是

(II)假设在轴上存在定点点,使为常数,

不与轴垂直时,由(I)有

以上同解法一的(II).

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574