22.请考生在A、B两题中选一题作答,如果多做,则按所做的第一题记分.
作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.
22.A(本小题满分10分)选修4-1:几何证明选讲
如图,已知是的切线,为切点,是的割线,与交于两点,
圆心在的内部,点是的中点.
(Ⅰ)证明四点共圆;
(Ⅱ)求的大小.
22.B(本小题满分10分)选修4-4:坐标系与参数方程
和的极坐标方程分别为.
(Ⅰ)把和的极坐标方程化为直角坐标方程;
(Ⅱ)求经过,交点的直线的直角坐标方程.
22.A
(Ⅰ)证明:连结.
因为与相切于点,所以.
因为是的弦的中点,所以.
于是.
由圆心在的内部,可知四边形的对角互补,所以四点共圆.
(Ⅱ)解:由(Ⅰ)得四点共圆,所以.
由(Ⅰ)得.
由圆心在的内部,可知.
所以.
22.B
解:以有点为原点,极轴为轴正半轴,建立平面直角坐标系,
两坐标系中取相同的长度单位.
(Ⅰ),,由得.
所以.
即为的直角坐标方程.
同理为的直角坐标方程.
(Ⅱ)由
解得.
即,交于点和.过交点的直线的直角坐标方程为.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。