三、解答题
18.(本小题满分12分)
如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的余弦值.
证明:
(Ⅰ)由题设,连结,为等腰直角三角形,
所以,且,又为等腰三角形,故,
且,从而.
所以为直角三角形,.
又.
所以平面.
(Ⅱ)解法一:
取中点,连结,由(Ⅰ)知,得.
为二面角的平面角.
由得平面.
所以,又,
故.
所以二面角的余弦值为.
解法二:
以为坐标原点,射线分别为轴、轴的正半轴,建立如图的空间直角坐标系.
设,则.
的中点,.
.
故等于二面角的平面角.
,
所以二面角的余弦值为.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。