三、解答题
20.(本小题满分13分,其中(Ⅰ),(Ⅱ),(Ⅲ)小问分别为6,4,3分.)
已知函数在处取得极值,其中为常数.
(Ⅰ)试确定的值;
(Ⅱ)讨论函数的单调区间;
(Ⅲ)若对任意,不等式恒成立,求的取值范围.
解:(I)由题意知,因此,从而.
又对求导得
.
由题意,因此,解得.
(II)由(I)知(),令,解得.
当时,,此时为减函数;
当时,,此时为增函数.
因此的单调递减区间为,而的单调递增区间为.
(III)由(II)知,在处取得极小值,此极小值也是最小值,
要使()恒成立,只需.
即,从而,
解得或.
所以的取值范围为.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。