三、解答题
(19)(本小题满分12分)
如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,
面CDE是等边三角形,棱EFBC.
(Ⅰ)证明FO∥平面CDE;
(Ⅱ)设BC=CD,证明EO⊥平面CDF
本小题考查直线与平面平行、直线与平面垂直等基础知识,考查空间想象
能力和推理论证能力.满分12分.
(Ⅰ)证明:取CD中点M,连结OM.
在矩形ABCD中,
OMBC,又EFBC,
则EFOM.连结EM,于是四边形EFOM为平行四边形.
∴FO∥EM.
又∵FO平面CDE,且EM平面CDE,∴FO∥平面CDE.
(Ⅱ)证明:连结FM.由(Ⅰ)和已知条件,在等边△CDE中,CM=DM,
EM⊥CD且EM=CD=BC=EF.
因此平行四边形EFOM为菱形,从而EO⊥FM.
∵CD⊥OM,CD⊥EM,∴CD⊥平面EOM.从而CD⊥EO.
而FM∩CD=M,所以EO⊥平面CDF.
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。