三、解答题

22.(本小题满分14)

    已知a12,点(anan+1)在函数f(x)=x2+2x的图象上,其中n=123,….

()证明数列{lg(1+an)}是等比数列;

()Tn=(1+a1)(1+a2)(1+an),求Tn及数列{an}的通项;

()bn=,求数列{bn}的前n项和Sn,并证明Sn+=1.

()由已知  an+1a2n+2an

        an+1+1(an+1)2

        a1=2

        an+11,两边取对数得:                                                       

        lg(1+an+1)=2 lg(1+an)

       

        {lg(1+an)}是公比为2的等比数列.

    ()()  lg(1+an)=2n-1·lg(1+a1)

                          =2n-1·lg3

                          =lg3

        1+an3.              (*)

        Tn=(1+a1)(1+a2)(1+an)

           =3·3·3·…·3

           =

           =3

        (*)式得an3-1

  ()an+1=a2n+2an

      an+1=an(an+2)

     

     

        bn=

      bn=2()

      Sn=b1+b2++bn

          =2

      =2()

      an=3-1    a12    an+1=3-1

      Sn1-

      Tn

      Sn+

 

 

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574