三、解答题
(18)(本小题满分12分)
如图,四面体ABCD中,O、E分别是BD、BC的中点,
(I)求证:平面BCD;
(II)求异面直线AB与CD所成角的大小;
(III)求点E到平面ACD的距离。
本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到
平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力。满
分12分。
方法一:
(I)证明:连结OC
∵
∵
在中,由已知可得
而
即
平面
(II)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知
直线OE与EM所成的锐角就是异面直线AB与CD所成的角
在中,
∵是直角斜边AC上的中线,
异面直线AB与CD所成角的大小为
(III)解:设点E到平面ACD的距离为
在中,
而
点E到平面ACD的距离为
方法二:
(I)同方法一。
(II)解:以O为原点,如图建立空间直角坐标系,则
异面直线AB与CD所成角
的大小为
(III)解:设平面ACD的法向量为则
令得是平面ACD的一个法向量。
又
点E到平面ACD的距离
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。