解答题

(22)(本小题满分12分)

已知,函数

(Ⅰ)当x为何值时,f(x)取得最小值?证明你的结论;

(Ⅱ)设f(x)在[-1,1]上是单调函数,求a的取值范围.

 本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力

解:⑴令=0  即[x2-2(a-1)x-2a]ex=0  ∴x2-2(a-1)x-2a=0

∵△=[2(a-1)]2+8a=4(a2+1)>0  ∴x1=, x2=

又∵当x∈(-∞, )时,>0;

当x∈(, )时,<0;

当x∈(, +∞)时,>0

∴x1, x2分别为f (x)的极大值与极小值点.

又∵;当.

而f ()=<0.

∴当x=时,f (x)取得最小值

⑵f (x)在[-1, 1]上单调,则≥ 0(或≤ 0)在[-1, 1]上恒成立

=[x2-2(a-1)x-2a]ex, 令g(x)= x2-2(a-1)x-2a=[x-(a-1)]2-(a2+1).

≥ 0(或≤ 0) 即g(x) ≥ 0(或≤ 0)

当g(x) ≥ 0在[-1, 1]上恒成立时,有

①当-1≤ a-1 ≤1即0≤ a ≤2时, g(x)min=g(a-1)= -(a2+1) ≥ 0(舍);

②当a-1>1即a ≥ 2时, g(x)min=g(1)= 3-4a ≥ 0 ∴a≤(舍).

当g(x) ≤ 0在[-1, 1]上恒成立时,有

①当-1≤ a-1 ≤ 0即0≤ a ≤ 1时, g(x)max=g(1)=3-4a ≤ 0, ∴≤ a ≤ 1;

②当0< a-1 ≤ 1即1< a ≤ 2时, g(x)max=g(-1)= -1 ≤ 0, ∴1< a ≤ 2;

③当1< a-1即a > 2时, g(x)max=g(-1)= -1 ≤ 0, ∴a >2

故a∈[,+∞)  

 

 

 

 

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574