解答题    

22.(本小题满分12分)

 函数在区间(0,+∞)内可导,导函数是减函数,且 设

是曲线在点()得的切线方程,并设

函数

   (Ⅰ)用表示m;

   (Ⅱ)证明:当

   (Ⅲ)若关于的不等式上恒成立,其中a、b为实数,

         求b的取值范围及a与b所满足的关系.

    

本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合

的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运

用数学基本关系解决问题的能力.满分12分

   (Ⅰ)解:…………………………………………2分

   (Ⅱ)证明:令

        因为递减,所以递增,因此,当

        当.所以唯一的极值点,且是极小值点,可知

最小值为0,因此…………………………6分

   (Ⅲ)解法一:是不等式成立的必要条件,以下讨论设此条件成立.

        对任意成立的充要条件是

       

       另一方面,由于满足前述题设中关于函数的条件,

利用(II)的结果可知,的充要条件是:过点(0,)与曲线

相切的直线的斜率大于,该切线的方程为

       于是的充要条件是…………………………10分

       综上,不等式对任意成立的充要条件是

                                                  ①

       显然,存在a、b使①式成立的充要条件是:不等式 ②

       有解、解不等式②得                          ③

       因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分

(Ⅲ)解法二:是不等式成立的必要条件,以下讨论设此条件成立.

       对任意成立的充要条件是

        ………………………………………………………………8分

       令,于是对任意成立的

充要条件是

        由

       当时,,所以,当时,

取最小值.因此成立的充要条件是,即………10分

       综上,不等式对任意成立的充要条件是

                ①

       显然,存在a、b使①式成立的充要条件是:不等式  ②

       有解、解不等式②得

       因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分

 

 

 

 

 

 

 

 

 

本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574