解答题
21.(本小题满分14分)
已知函数f(x)=lnx,g(x)=ax2+bx,a≠0
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中
点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N
处的切线不平行
解:(I),
则
因为函数h(x)存在单调递减区间,所以<0有解
又因为x>0时,则ax2+2x-1>0有x>0的解.
①当a>0时,y=ax2+2x-1为开口向上的抛物线,ax2+2x-1>0总有x>0的解;
②当a<0时,y=ax2+2x-1为开口向下的抛物线,而ax2+2x-1>0总有x>0的解;
则△=4+4a>0,且方程ax2+2x-1=0至少有一正根.此时,-1<a<0.
综上所述,a的取值范围为(-1,0)∪(0,+∞)
(II)证法一 设点P、Q的坐标分别是(x1, y1),(x2, y2),0<x1<x2.
则点M、N的横坐标为
C1在点M处的切线斜率为
C2在点N处的切线斜率为
假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2.
即,则
=
所以 设则①
令则
因为时,,所以在)上单调递增. 故
则. 这与①矛盾,假设不成立
故C1在点M处的切线与C2在点N处的切线不平行
证法二:同证法一得
因为,所以
令,得 ②
令
因为,所以时,
故在[1,+上单调递增.从而,即
于是在[1,+上单调递增
故即这与②矛盾,假设不成立
故C1在点M处的切线与C2在点N处的切线不平行
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。