解答题
18.(本小题满分14分)
某城市有甲、乙、丙3个旅游景点,一位客人游览这三个景点的概率分别
是0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设ξ表示客人离开
该城市时游览的景点数与没有游览的景点数之差的绝对值.
(Ⅰ)求ξ的分布及数学期望;
(Ⅱ)记“函数f(x)=x2-3ξx+1在区间[2,+∞上单调递增”为
事件A,求事件A的概率.
解:
(I)分别记“客人游览甲景点”,“客人游览乙景点”,“客人游览丙景点”
为事件A1,A2,A3. 由已知A1,A2,A3相互独立,P(A1)=0.4,
P(A2)=0.5,P(A3)=0.6.
客人游览的景点数的可能取值为0,1,2,3. 相应地,客人没有游览
的景点数的可能取值为3,2,1,0,所以的可能取值为1,3.
P(=3)=P(A1·A2·A3)+ P()
= P(A1)P(A2)P(A3)+P()
=2×0.4×0.5×0.6=0.24,
1
3
P
0.76
0.24
P(=1)=1-0.24=0.76.
所以的分布列为
E=1×0.76+3×0.24=1.48.
(Ⅱ)解法一 因为
所以函数上单调递增,
要使上单调递增,当且仅当
从而
解法二:的可能取值为1,3.
当=1时,函数上单调递增,
当=3时,函数上不单调递增.
所以
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。