解答题
(16)(本小题共14分)
如图, 在直三棱柱中, ,
点为的中点
(Ⅰ)求证;
(Ⅱ) 求证;
(Ⅲ)求异面直线与所成角的余弦值
解:
(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,
∴ AC⊥BC,且BC1在平面ABC内的射影为BC,∴ AC⊥BC1;
(II)设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点,
∴ DE//AC1,
∵ DE平面CDB1,AC1平面CDB1,∴ AC1//平面CDB1;
(III)∵ DE//AC1,∴ ∠CED为AC1与B1C所成的角,
在△CED中,ED=AC 1=,CD=AB=,CE=CB1=2,
∴ ,
∴ 异面直线 AC1与 B1C所成角的余弦值.
解法二:
∵直三棱锥底面三边长,
两两垂直
如图建立坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)
(Ⅰ),
(Ⅱ)设与的交点为E,则E(0,2,2)
(Ⅲ)
∴异面直线与所成角的余弦值为
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。