22.(本小题满分14分)
如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线
交于A,B两点,点Q是点P关于原点的对称点。
(I)设点P分有向线段所成的比为,证明:
(II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有
共同的切线,求圆C的方程.
解:
(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得
①
设A、B两点的坐标分别是 、、x2是方程①的两根.
所以
由点P(0,m)分有向线段所成的比为,
得
又点Q是点P关于原点的对称点,
故点Q的坐标是(0,-m),从而.
所以
(Ⅱ)由 得点A、B的坐标分别是(6,9)、(-4,4).
由 得
所以抛物线 在点A处切线的斜率为
设圆C的方程是
则
解之得
所以圆C的方程是
即
本课件完全公益,使用过程中有任何问题,或想参与新课件制作,请加开心教练QQ:29443574。